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Abstract. This paper proposes an efficient yet simple fractal-based
image denoising technique. Denoising is carried out during fractal coding
process. Hierarchical classification is used to increase encoding speed, and
avoid a lot of futile mean-square-error (MSE) computations. Quadtree-
based image partitioning using dynamic range and domain sizes is used to
increase the degree of noise removal. Further denoising is achieved using
pyramidal decoding, using non-arbitrary seed image, and additional post
processing. Results from experiments show that our proposed scheme
improves the structural similarity (SSIM) index of the Lenna image from
44% to 78% for low noise cases, and from 9% to 35% for high noise cases.
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1 Introduction

Digital images are highly susceptible to contamination by noise during image
acquisition and transmission. The commonest form of background noise found
to corrupt digital images is Additive White Gaussian Noise (AWGN). AWGN
can get into an image due to imperfect image-capturing device, insufficient illu-
mination of the image subject during image capture, or due to transmission of
the image over a noisy network. Background noise hampers both visual quality
and object identification. Hence an efficient noise removal algorithm is required
to remove or reduce its derogatory effects.

Linear filtering and smoothing operations are simple and popular methods
for noise removal and image restoration. But their robustness is less, as they
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hypothesize that the image consists of a stationary signal, formed through a lin-
ear system. However, real-world images are generally acquired using non-linear
techniques, and the images have non-stationary statistical properties. The inten-
sity distribution captured by the image acquiring device is a product of the
illumination falling on the scene or object of interest, and its reflectance. Many
non-linear and adaptive image denoising methods have been proposed which take
these statistical variations into account, and therefore give better output image
quality, while maintaining high frequency features of the input image [5,20].

In this paper, we examine the computational problem of estimating the orig-
inal image forig from its noisy version fnoisy, corrupted by Gaussian noise. The
problem may be defined as:

fnoisy = forig + G (1)

where G is the additive white Gaussian noise. Noise removal, or denoising, is
therefore the methodology of estimating the original signal forig from the noise-
degraded signal fnoisy.

Proposed by Barnsley in 1988 [3], Fractal Image Compression (FIC) is a
lossy image coding technique which exploits local self-similarities present in an
image, and represents the image as a collection of affine transformations. Jacquin
[13] presented the first automated and practical version of FIC, and it is known
as the baseline fractal image compression (BFIC). BFIC uses Partitioned Iter-
ated Function System (PIFS) to find matching image-patches without requiring
human assistance. Recently Roy et al. [18] proposed a simple and efficient approx-
imation of the scaling parameter which allows us to substitute to the expensive
process of matrix multiplication with a simple division of two numbers. Hurt-
gen and Stiller [11] and Bhattacharya et al. [4] modified the Fishers method
and obtained some improved performance. Since then, numerous FIC schemes
have been proposed [7,9,23]. Apart from being an image compression technique,
FIC has also been applied in various fields like image segmentation [6], image
indexing and retrieval [17], image encryption [16], image authentication [15], and
facial image recognition [21].

In this paper, we propose a fractal-coding based scheme for denoising an image
corrupted by AWGN. Basic FIC theory is explained in Sect. 2. The proposed FIC
based denoising scheme is discussed in Sect. 3. Experimental results of our scheme
are shown in Sect. 4, and concluding discussions are presented in Sect. 5.

2 Fractal Coding

An Iterated Function System (IFS) is a collection of contractive affine transfor-
mations {wi : IR2 → IR2|i = 1, . . . , n} which map the plane IR2 to itself. This
collection of transformations defines a map:

W (·) =
n⋃

i=1

wi(·) (2)

A contractive map is one, which brings points closer together. Hutchinson [12]
proved that if wi for all i in an IFS be contractive, then W is contractive. If a
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contractive map is iterated from any initial point, it will always converge to a
unique fixed point, which is called the attractor of the given contractive map.
Given an input image S0, we can apply W on it repeatedly in a feedback loop
to obtain the fixed point xW , which is the limit set:

xW ≡ S∞ = lim
n→∞ Wn(S0) (3)

where W p = W{wp−1(·)}. Thus the attractor or the fixed point xW of the map
W is not dependent on the choice of S0, and W alone can completely determine
a unique image. This is called the Contractive Mapping Fixed-Point Theorem [1].
Also, if the error-difference between an original image f and the transformation
of that image W (f) is less than a certain threshold, the transform W is accepted
as an equivalent representation of the image. This is the underlying concept of
Collage Theorem [2]. FIC tries to find an IFS that maps an image onto itself.
However, finding a single IFS that describes an entire image requires human
intervention, and cannot be automated effectively. Jacquin [13] suggested that
instead of finding transformations that describe a whole image, we can find
transforms that apply only to portions of an image. These transformations are
called Partitioned IFS (PIFS), which help to automate the encoding process.

2.1 Fractal Encoding

An image f is segmented into non-overlapping range-blocks Ri of size r × r and
overlapping domain-blocks Dj of size 2r × 2r. The collection of all range blocks
comprises the range pool R and the collection of all domain blocks comprises
the domain pool D. Range blocks are smaller than domain blocks in order to
make the transformations contractive. The domain pool is created by sliding a
window of size 2r × 2r from the top-left corner to the bottom-right corner of f
with an integer step-size d in horizontal and vertical directions.

M

r

r

i

r

2r
j

j

Fig. 1. Fractal encoding: mapping domains to ranges [11]
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For each range block Ri ∈ R an exhaustive search is carried out in the domain
pool D to find a domain block Dj , such that Dj can be transformed “closely”
to Ri. The contractive affine transformation wj is then applied to Dj (Fig. 1).
The optimal selection of wj and Dj should ensure that the reconstructed image

g = W (D) =
n⋃

j=1

wj(Dj) (where n = (M/r) × (N/r): number of range blocks)

has the minimum error-difference from the original image f . The transformation
wj and the location of the domain-block Dj comprise the fractal code of the
range-block Ri. Fractal codes of all the range blocks collectively form the IFS
of the image f . The contractive affine transform wj is composed of a spatial
transform and a grey level transform. The spatial transform is contractive, and
it maps the spatial domain Dj (with size 2r × 2r) to the spatial range Ri (with
size r × r). The grey level transform G is of the form:

G(D′
j) = sj · D′

j + oj (4)

where D′
j is the spatially contracted domain block Dj to match the size of Ri it

is mapping to (henceforth for brevity we use Dj to mean D′
j), sj is the contrast

or scaling factor, and oj is the brightness or the offset of the transform. Using
this definition, the FIC problem reduces to searching the domain pool D to find
Dj , sj and oj for each Ri such that

E(Ri,Dj) < ε (5)

where E is the error-metric between range block Ri and transformed domain
block Dj , and ε is the target fidelity of the reconstructed image. A lot of image
quality measures are available, but the mean square error (MSE) metric [8] is
generally used as distortion criterion. So Eq. 5 becomes

MSE(Ri,Dj) = ‖Ri − (sj · Dj + oj)‖22 < ε (6)

where ‖·‖2 is the two-norm.

2.2 Fractal Decoding

Fractal decoding is fast and recursive. An arbitrary initial “seed” image (typi-
cally a blank image) is chosen, and the encoded affine transforms are recursively
applied on the image. By the principles of the Contractive Mapping Fixed-Point
Theorem [1] and the Collage Theorem [2], the arbitrary image converges to the
final decoded image within a few iterations.

3 Proposed Algorithm

In this section, we discuss the various components of our fast image denois-
ing technique. Of the five components, “hierarchical classification”, “optimal
denoised image”, and “non-arbitrary seed image” are our original contributions,
while the rest have been adapted from their corresponding sources.
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3.1 Fractal Image Denoising

Fractal coding exploits the presence of self-similarity in different magnification
levels of an image. Fractal image denoising is based on the idea that since nat-
ural images contain self-similar structures, they can easily be approximated by
contractive affine transformations. However, approximating random noisy com-
ponents occurring in an image using such affine transforms is impossible [10].

Fractal coding and decoding schemes involve finding the scaling and offset
parameters sj and oj for a given range Ri and a best matched domain Dj

such that Eq. 6 is minimized. In order to store the parameters in the fractal
file, they are quantized in the encoder and dequantized in the decoder. Hence
post quantization of the parameters often leads to some degree of information
loss as compared with pre-quantization [9]. Since noise is high degree of random
information, this information is lost due to quantization, which aids the denoising
process in fractal coding.

3.2 Hierarchical Classification

FIC is an asymmetric technology. Exhaustive searching of the domain pool to
find matching block pairs is computationally intensive, and makes the encoding
algorithm slower than most of the existing algorithms. A lot of research has
gone into solving the lengthy encoding-time problem, and a popular solution is
to perform domain pool classification [19,26].

Fisher [9] proposed a classification scheme to illustrate the advantages of
domain classification. A domain or range is partitioned into four quadrants. For
each quadrant, values proportional to mean pixel intensity and to the variance
of the pixel intensities are computed. Classes are identified based on the permu-
tational orderings of these values.

S00 S01 S10 S11

S02 S03 S12 S13

S20 S21 S30 S31

S22 S23 S32 S33

S0 S1

S2 S3

24 24

24 24

4P4 = 24 classes

244 = 331776 classes

Image Blocks

Fig. 2. Hierarchical classification.
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The Hierarchical Classification scheme [4] is an improvement of Fisher’s
Mean-Variance classification scheme. A sub-image is divided into four quad-
rants (Fig. 2). Sum of pixel values (luminance) of each quadrant is calculated as
S0, S1, S2 and S3. According to the ordering of the luminance sums, there are
4P4 = 24 classes. This gives the Level - I classification. In Level - II, each quad-
rant is further subdivided into 4 sub-quadrants (sixteen subquadrants in total),
and sum of pixel values over each sub-quadrant is calculated as Si0, Si1, Si2 and
Si3 (i = 0, 1, 2, 3). Based on the ordering of Sij in quadrant i, each quadrant
gives 24 classes, totalling to 244 = 331776 classes, as shown in Fig. 2.

Our proposed denoising technique incorporates the hierarchical classification
scheme with the baseline FIC to speed up the encoding process in comparison
to Baseline FIC.

3.3 Quadtree Partitioning

Some regions (range blocks) in an image can be defined well with domain range
blocks, while some others are difficult. Quadtree Partitioning breaks up a range
block into 4 equally sized sub-quadrants, when it cannot be approximated well
enough by a domain block. The process repeats recursively, starting at the initial
image and iterating until partitioned blocks are small enough to be approximated
within some specified MSE threshold. Small blocks can be approximated better
than large blocks because pixels within a small neighbourhood tend to show high
correlation (Fig. 3).

Fig. 3. Quadtree partitioning with dynamic range sizes.
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In our implementation, we have created domain pools of sizes 8 × 8 (Dmin),
16 × 16 and 32 × 32 (Dmax); corresponding range sizes are 4 × 4 (Rmin), 8 × 8
and 16 × 16 (Rmax) respectively. The program first tries with a 16 × 16 range
block. If a suitable domain is found, an affine map is generated, else the range
is quadtree partitioned into 4 smaller quadrants as range blocks, and domain
blocks of appropriate size are searched for each of them. High detail areas are
usually mapped by smaller ranges, while less-detailed areas are mapped by larger
ones. The distance between two successive domains, called domain step-size, is
set to 4 pixels in the default case.

3.4 Optimal Denoised Image

In our proposed technique, we obtain an optimal denoised image by averaging
and post processing. Image decoding is done by iterating through the fractal
code, where we approximate the ith range block Ri

apr of kth approximate image
from an arbitrary image using

Ri
apr = s · D̄k−1 + o (7)

where D̄ is obtained by averaging i.e. taking the mean value of every 2 × 2
pixel block of the (k − 1)th image. Since noise is distributed randomly over the
pixels, averaging the pixel values also averages the noise levels, resulting in low
noise value. As ranges are encoded independently, the block boundaries may not
be smooth. The human eye is sensitive to such discontinuities, however small. A
post-processing step [9] has been applied to smooth-out the block boundaries and
improve decoded image quality. The pixels at the block-boundaries are smoothed
by a weighted average technique. The pixel values a and b (on either side of the
block-boundary) are replaced by w1a + w2b and w2a + w1b respectively, with
w1+w2 = 1. For smallest ranges (4×4), the weights are w1 = 5/6 and w2 = 1/6,
while for the larger ranges, the weights are w1 = 1/3 and w2 = 2/3. Though the
weights are heuristic, they give satisfactory results (Fig. 7d).

3.5 Non-arbitrary Seed Image

Conventional fractal decoding uses an arbitrary seed image as the starting image
of the recursive decoding process. For easy implementation, this image is chosen
as a plain black image i.e. a matrix filled with zeroes. Since the first decoding
iteration is dependant on the seed image, the plain black image may not always
give the best results for denoising purposes. For images having self-similar struc-
tures, the final attractor image (fixed point) is not dependent on the choice of
seed image. However, a noisy image has lots of random pixel intensity varia-
tions, and is therefore not very self similar. So for denoising, we have used some
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non-arbitrary noise free images as the starting seed image for fractal decoding
(Fig. 4). The idea is to “help” the first decoding iteration by providing noise-
free domains to map to ranges. Using these images we gained some small yet
significant improvement in decoded image quality (Fig. 5).

Fig. 4. Non-arbitrary noise-free seed images chosen to further improve denoised output.

4 Experimental Results

We tested our technique on seven benchmark 8-bit images (Aerial, Baboon, Boat,
Bridge, Lenna, Man and Peppers) taken from the USC-SIPI Image Database.
Image sizes are either 512 × 512 or 1024 × 1024. We have implemented the algo-
rithm in C++ using OpenCV library, and have run the tests in Ubuntu 14.04
running on Intel i7 2630QM 2.0 GHz processor and 4GB DDR3 RAM. We com-
pared the performance of our proposed technqiue to two popular adaptive image
restoration schemes: Lee filter [14] and Bilateral filter [22]. For this comparison,
we have run the tests on images − Lenna, Aerial, Baboon and Boat.

For all the images, varying levels of AWGN was incorporated by varying the
standard deviation σ from 0.03 to 0.30. A higher σ means more noise. Below
σ = 0.03, the image appeared practically noiseless, while above σ = 0.30, the
image was not recognizable. Then each image was fractally encoded and decoded.
The decoded image was compared to the noisy image and the original image.

We have measured the decoded image quality with respect to the original
noise free image using Peak Signal to Noise Ratio (PSNR) and Structural Simi-
larity Index (SSIM) [24,25].
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(a) PSNR: 30.6, SSIM: 0.78 (b) PSNR: 30.8, SSIM: 0.82

(c) PSNR: 28.3, SSIM: 0.75 (d) PSNR: 28.7, SSIM: 0.78

Fig. 5. Output after using (a, c) random seed image and (b, d) Fig. 4a as seed image,
with AWGN σ = 0.06.

Figure 5 shows the output of denoising operation after using a random seed
image versus using a noise-free seed image, as discussed in Sect. 3.5. Metric-wise
the improvements are small. However to the human eye, object recognition and
visual clarity is increased in Figs. 5b and d.

Table 1 lists the denoised image quality (in PSNR and SSIM) obtained using
the proposed method, and comparares the results with that of Lee filter [14]
and Bilateral filter [22]. Figures 6a and d show the comparison in the variation
of noisy and denoised image quality with increase in image noise using PSNR
and SSIM metrics, respectively, using the proposed denoising scheme. In both
graphs, the denoised images have better quality than their noisy counterparts,
indicating that denoising was indeed achieved. However, for the ’bridge’ image,
at very low levels of noise, our proposed scheme actually degraded the image
quality.

Figures 6b, c, e and f show the comparison of our scheme with the Lee filter
denoising method and the Bilateral filter method, for Aerial and Baboon images.
Here again, our proposed scheme does degrade the image quality for very low
noise levels. A possible explanation is that the fractal scheme acts more like a
lossy compressor than an image restorator at these very low levels of noise. As
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Table 1. Some highlights of experimental results obtained, showing denoised image
quality (PSNR and SSIM) obtained using proposed denoising method, and compar-
ing with Lee filter [14] and Bilateral filter [22]. Bold figures indicate cases where our
proposed scheme performs the best denoising across varying noise values, compared to
other methods.

Image Sigma Noisy image Proposed method Lee filter Bilateral filter

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lenna 0.03 30.5 0.72 32.42 0.87 32.76 0.86 31.93 0.88

0.12 18.6 0.22 26.90 0.58 24.03 0.43 20.82 0.26

0.21 14.1 0.11 22.99 0.39 20.57 0.27 15.08 0.10

0.30 11.7 0.07 20.51 0.29 18.63 0.20 12.16 0.06

Baboon 0.03 30.5 0.89 22.35 0.61 24.98 0.79 22.97 0.85

0.12 18.5 0.47 21.88 0.55 21.42 0.53 18.77 0.41

0.21 14.0 0.28 20.21 0.43 19.15 0.38 14.38 0.21

0.30 11.6 0.18 18.76 0.34 17.76 0.30 11.74 0.13

Aerial 0.03 30.5 0.84 26.99 0.85 28.67 0.87 29.40 0.87

0.12 18.7 0.40 24.62 0.67 22.15 0.54 20.48 0.33

0.21 14.5 0.24 21.96 0.52 18.45 0.39 15.31 0.16

0.30 12.0 0.16 19.71 0.41 16.32 0.29 12.46 0.11

Man 0.03 30.7 0.77 31.78 0.83 30.76 0.81 30.76 0.81

0.12 19.0 0.25 22.84 0.41 21.19 0.30 21.19 0.30

0.21 14.5 0.12 19.44 0.26 15.48 0.13 15.48 0.13

0.30 12.0 0.08 17.32 0.19 12.44 0.08 12.44 0.08

noise levels gradually increase, our scheme starts performing well as a denoiser.
When comparing to Lee filter, our scheme performs well for the baboon image,
but not so well for the aerial image. It is interesting to note that Bilateral filtering
actually degrades the image (according to the metrics) when noise level increases.
An observation from the curves show that the proposed scheme performs best
when σ is around 0.05. The downward slope is least around this region of the
curve, and for baboon it even shows an upward trend.

Figures 7 and 8 show the actual output images of our proposed scheme com-
pared with the noisy images, the images restored with Lee-filter and the images
restored with Bilateral filter. The SSIM and PSNR values of each image, com-
pared to the original, noise-free image is given below each image. Lee filter makes
images look blurry. Bilateral filter makes the image look sharper, but noise par-
ticles are not effectively removed. Our scheme maintains the contrast and edges.
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Fig. 6. (a) Comparison of level of restoration for different images using PSNR metric.
(b) - (c) Comparison of performance of proposed method with Lee filter [14] and
Bilateral filter [22] for Aerial and Baboon images using PSNR. (d) Comparison of
level of restoration for different images using SSIM metric. (e) - (f) Comparison of
performance of proposed method with Lee filter [14] and Bilateral filter [22] for Aerial
and Baboon images using SSIM.

Size of range blocks chosen also influence the degree of denoising achieved.
If only large range block sizes are chosen (like 32 × 32 or 64 × 64), then all noisy
components disappear, but the quality of the output image is lowered as well.
On the other hand, if only very small range blocks (like 2 × 2 or 4 × 4) are
chosen, all the details from the noisy image will get approximated accurately,
including the noisy components, thereby bringing back the noise in the decoded
image, and leading to very little or no denoising This illustrates the importance
of properly choosing the fractal encoding parameters for reducing noise. Our
proposed scheme uses the quadtree partitioning scheme (Sect. 3.3), instead of
using fixed size range blocks to tackle this situation. If the tolerance fidelity
for a range block is exceeded, then it is partitioned into quadrants, and each
quadrant is processed in a similar fashion as the parent block.
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(a) σ = 0.06 (PSNR:
24.4, SSIM: 0.44)

(b) Lee-filter (PSNR:
28.6, SSIM: 0.65)

(c) Bilateral filter
(PSNR: 29.3, SSIM:
0.66)

(d) Proposed (PSNR:
30.6, SSIM: 0.78)

(e) σ = 0.12 (PSNR:
18.6, SSIM: 0.22)

(f) Lee-filter (PSNR:
24.0, SSIM: 0.43)

(g) Bilateral filter
(PSNR: 20.8, SSIM:
0.26)

(h) Proposed (PSNR:
26.9, SSIM: 0.58)

(i) σ = 0.18 (PSNR:
15.3, SSIM: 0.13)

(j) Lee-filter (PSNR:
21.5, SSIM: 0.31)

(k) Bilateral filter
(PSNR: 16.5, SSIM:
0.13)

(l) Proposed (PSNR:
24.1, SSIM: 0.44)

(m) σ = 0.24 (PSNR:
13.2, SSIM: 0.09)

(n) Lee-filter (PSNR:
19.8, SSIM: 0.24)

(o) Bilateral filter
(PSNR: 13.9, SSIM:
0.08)

(p) Proposed (PSNR:
22.1, SSIM: 0.35)

Fig. 7. Output for Lenna image. First column is the noisy image. Second column uses
Lee filter [14]. Third column uses Bilateral Filter [22]. Fourth column has denoised
image using proposed Fractal scheme.
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(a) σ = 0.06 (PSNR:
24.5, SSIM: 0.53)

(b) Lee-filter (PSNR:
27.6, SSIM: 0.67)

(c) Bilateral filter
(PSNR: 27.7, SSIM:
0.66)

(d) Proposed (PSNR:
28.3, SSIM: 0.75)

(e) σ = 0.12 (PSNR:
18.6, SSIM: 0.28)

(f) Lee-filter (PSNR:
23.6, SSIM: 0.46)

(g) Bilateral filter
(PSNR: 20.7, SSIM:
0.29)

(h) Proposed (PSNR:
25.7, SSIM: 0.59)

(i) σ = 0.18 (PSNR:
15.2, SSIM: 0.18)

(j) Lee-filter (PSNR:
21.1, SSIM: 0.34)

(k) Bilateral filter
(PSNR: 16.5, SSIM:
0.16)

(l) Proposed (PSNR:
23.4, SSIM: 0.46)

(m) σ = 0.24 (PSNR:
13.1, SSIM: 0.12)

(n) Lee-filter (PSNR:
19.6, SSIM: 0.27)

(o) Bilateral filter
(PSNR: 13.8, SSIM:
0.10)

(p) Proposed (PSNR:
21.6, SSIM: 0.37)

(q) σ = 0.30 (PSNR:
11.6, SSIM: 0.09)

(r) Lee-filter (PSNR:
18.4, SSIM: 0.23)

(s) Bilateral filter
(PSNR: 12.1, SSIM:
0.07)

(t) Proposed (PSNR:
20.1, SSIM: 0.31)

Fig. 8. Output for Boat image. First column is the noisy image. Seoncd column uses
Lee filter [14]. Third column uses Bilateral Filter [22]. Fourth column has denoised
image using proposed Fractal scheme.
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5 Conclusions

Our proposed fractal based denoising scheme has an advantage: as fractal
transformations were primarily developed for image compression, our proposed
scheme can also be optimized for performing image denoising and image com-
pression simultaneously. Our scheme can remove noise effectively and also pre-
serving edges, in order to reduce visual artifacts and distortions. The denoising
is performed mainly during the fractal encoding process, where hierarchical clas-
sification has been employed to accelerate the encoder. Quadtree based image
partitioning, pyramidal decoding and post processing has been used to enhance
the degree of noise removal and improve the output image quality.
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