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Why Does a VisualQuestion Have Different Answers?
Anonymous Author(s)

ABSTRACT
Visual Question Answering (VQA) is a popular task of re-
turning the answer for a question about an image. A key
problem for this task is that different people may return dif-
ferent answers. Moreover, little is known why such answers
differ. We propose a taxonomy of nine plausible reasons ex-
plaining why, and asked crowd workers to annotate which
of these reasons led to answer disagreements for roughly
35,000 visual questions asked by blind and sighted people.
Our results highlight why disagreements arise in practice, as
well as which reasons are unique to different domains. We
also propose a problem of predicting directly from a visual
question (plus optionally answers) which reasons will lead
the answers to differ, and present two implementations of a
machine learning model for this purpose. We demonstrate
that these systems can predict such reasons with a precision
as high as 94%.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in
HCI; • Information systems→ Crowdsourcing;
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1 INTRODUCTION
An important task is to answer questions about images [5, 10].
However, a challenge is that multiple people can return a
diversity of answers for the same visual question (VQ) [32].
A critical step towards returning a desired answer is under-
standing why different people provide different answers.
Previous research has proposed several reasons why an-

swer differences may arise from a crowd. Reasons that are
commonly discussed include ambiguity [59], spam [27], and
subjectivity [67]. Moreover, complementary works exam-
ine how to resolve these differences and arrive at a true
answer [22, 23, 36]. Yet, prior works address a single reason

, ,
. ACM ISBN . . . $15.00
https://doi.org/

rather than bringing all such reasons of differences (hence-
forth referred to as ‘reasons for answer disagreement’ or
‘disagreement-sources’) under a single umbrella.

Our work fills this gap in the literature in order to sup-
port the design of machines that can automatically select
for themselves the appropriate actions needed to resolve
answer differences. First, we propose a taxonomy of nine
plausible reasons of why people disagree when answering a
VQ. These reasons are illustrated in Figure 1. Generally, we
established that disagreements can occur because there are
issues with the question-image (QI) pair (first and second
column), or there are issues with the ten answers (last col-
umn). We asked crowd-workers to annotate which of these
reasons led to answer disagreement for roughly 35,000 VQs
asked by blind and sighted users. Results show that three
prominent sources cause answer disagreement in over 90%
of the VQs. We also propose the novel problem of predicting
these disagreement-sources directly from a VQ (plus option-
ally answers), and present two machine learning systems for
automatically addressing this problem. Experimental result
demonstrate promising performance from one of the systems
in anticipating why answers will differ.

2 RELATEDWORK
Understanding Why a Crowd Disagrees
A precursor to deciding how to respond when different peo-
ple provide different responses for a task is understanding
why people return different responses. A variety of reasons
have been explored as possible causes of crowd disagreement
including difficulty [71], ambiguity [38, 42], subjectivity [53],
and spam or malicious answers [27]. However, to the best of
our knowledge, no work has yet enumerated a comprehen-
sive list of possible reasons for disagreements and no study
has examined their prevalence in practice. Accordingly, moti-
vated from the domain of visual question answering, we pro-
pose a taxonomy of reasons that could lead to disagreements
from a crowd and conduct large-scale analysis to uncover
the significance of each reason in practice.

Resolving Crowd Disagreement
Previous efforts have studied various causes of disagreement
separately (usually in domains outside VQA), and posed so-
lutions for resolving crowd disagreements. Commonly, dis-
agreement is considered a measure of poor quality in the an-
notation task, for example because the task is poorly defined
or because the annotators’ lack of knowledge. Numerous
works try to employ disagreement as a valuable signal for

https://doi.org/
https://doi.org/
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Can you see the label and 

tell me what it is please?

Answers

1. unsuitable

2. unsuitable

3. unsuitable

4. unsuitable

5. no

6. no

7. unsuitable

8. no

9. unsuitable

10.unsuitable
LOW QUALITY IMAGE

How many people are 

eating this hotdog?

Answers

1. 2

2. 0

3. 2

4. 0

5. 2

6. 3

7. 0

8. 2

9. 2

10.2ANSWER NOT PRESENT 

/ GUESSWORK

I just wanted to say thank 

you for your assistance.

Answers

1. unanswerable

2. unanswerable

3. your welcome

4. unanswerable

5. thank you

6. unanswerable

7. you welcome

8. unanswerable

9. no problem

10. thanks
INVALID

How many sheep are there?

What is on the bed?

Could the floor use a mopping?

When does this expire?

What book is this?

What kind of spice is this?

Answers

1. pillows

2. pillows

3. pillows

4. pillows

5. blanket

6. pillows

7. pillows

8. blanket

9. sheets

10.pillows

Answers

1. yes

2. yes

3. yes

4. yes

5. no

6. no

7. no

8. yes

9. no

10.yes

Answers

1. chili powder

2. ewfwfe

3. chili powder

4. chili powder

5. chili powder

6. chili powder

7. chili powder

8. chili powder

9. chili powder

10.chili powder

Answers

1. maxiaids

2. maxiaids

3. maxi aids

4. maxi aids catalog

5. macias catalog

6. maxiaids products for 

independent living

7. maxiaids

8. maxiaids

9. maxi aids catalog

10.maxi aids 2012 catalog

Answers

1. august 14 2013

2. 08 14 2013

3. 14 august 2013

4. 14 aug 2013

5. 14 aug 2013

6. august 14th 2013

7. 14aug2013

8. 14 aug 2013

9. 14 aug 2013

10.aug 14 2013

Answers

1. 23

2. 31

3. more than 20

4. 20

5. 30

6. 20

7. 30

8. 24

9. 25

10. lot

DIFFICULT

AMBIGUOUS

SUBJECTIVE

SYNONYMS

GRANULAR

SPAM

Figure 1: Examples of VQs asked by blind and sighted users, and corresponding answers from10 different people. As illustrated,
the 10 answers can differ for a variety of reasons, including reasons arising from the question-image (QI) pair (first and second
column), or from the answers (third column). We propose a system which can take a QI pair (and optionally, the 10 answers)
as input, and automatically predict the reason(s) for which the answers may differ, if they do.

uncovering a true answer [3, 6, 7, 22, 24, 34–36, 59, 63, 67].
Some works identify which among multiple responses to
trust [60, 71]. Others embrace context to resolve ambigu-
ity [2]. Each work embeds assumptions regarding why an-
swers differ such as because of ambiguity, subjectivity, dif-
ficulty, etc in order to pose a solution for recovering a true
answer. Yet, a challenge is knowing which assumptions are
valid when and so which methods to use when. Our work
most closely relates to the CrowdVerge system which antici-
pates whether a crowd will disagree [32]. Our work goes a
step further and offers a solution to automatically uncover
why a crowd will disagree, critical information for deciding
which method is best-suited to resolve disagreements.

VisualQuestion Answering (VQA) Datasets
Motivated by the recent excitement about the VQA problem,
many datasets have been introduced to foster active research
in developing artificial intelligence systems that automati-
cally answer VQs [4, 5, 29, 31, 37, 40, 41, 43, 45, 50, 57, 69, 70,
72, 73]. Yet, a limitation of prior work is they assume the goal
is to return a single answer despite the fact that VQs often

lead to multiple answers from different people [5, 32]. Our
work enriches prior work by introducing meta-data reveal-
ing why crowds disagree when their answers differ for two
existing popular VQA datasets: VizWiz [33] and VQA [5].
Our extension of these datasets provides a critical founda-
tion for the development of machine learning algorithms
that can automatically identify why answers will differ for
VQs coming from a diversity of users including people who
are both blind (i.e., VizWiz) and sighted (i.e., VQA dataset).

Visual Dialog
Several works have attempted to support a continuous dialog
to enable the remote humans supplying the answers to return
a single desired answer. For example, Be My Eyes provides a
direct connection between the asker and answerer [1]. Cho-
rus:View simulates a direction connection between a asker
and answerer by embracing a back-end crowd to engage
as a single conversational partner [44]. Visual Dialog pro-
poses an algorithm to automatically engage in a conversation
with a person [20]. Our work can offer an alternative way
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of creating a dialog, by (a) identifying whether the answer-
ing crowd will agree on the answer to the given VQ, along
with a reason for disagreement, if any, and (b) providing
automatic feedback on how to best resolve the disagreement,
thereby helping users to ask VQs that will achieve answer
convergence more quickly and cheaply.

3 METHODOLOGY
We now describe the datasets and crowdsourcing system we
designed to collect disagreement-source labels.

Datasets
We employ two popular VQA datasets that reflect a diversity
of VQs coming from blind and sighted users. We describe
these datasets below.

VizWiz: The VizWiz dataset [33] originates from blind
users [10], who snapped photos using a smart-phone and
recorded spoken questions about the photos. These VQs of-
ten address accessibility issues for daily tasks, with a focus on
asking for objective information; e.g., “what type of beverage
is in this bottle?” or “has the milk expired?” [11]. The VQs
represent a real-world use-case scenario where a person is in-
teractively exploring and learning about his/her surrounding
physical world. Since blind people cannot see and verify the
quality of the pictures they take, many images are ill-framed,
lack proper illumination, or are out-of-focus. Each VQ com-
prises an image and a transcription of the spoken question
(the QI pair), and ten answers crowdsourced from Amazon
Mechanical Turk (AMT) workers. For our initial analysis, we
used the entire VizWiz dataset, excluding the VQs where all
answers are identical using exact string matching (i.e. no
answer disagreement). This resulted in 29,974 VQs from the
VizWiz dataset.

VQA_2.0: We also examine VQs asked by sighted users
from the VQA 2.0 Balanced Real Images dataset [31]. Unlike
the VQs from the VizWiz dataset, the images and questions
in this datasets were created separately. The images were
taken from the MS-COCO dataset [46], and the questions
came from crowd-workers, whowere instructed to ask such a
question about the image that can ‘stump’ a ‘smart robot’ [5].
Most of the images have high photographic quality. Like the
VizWiz dataset, each VQ comprises a QI pair and ten crowd-
sourced answers. For our experiment, we have randomly
selected 5,032 QI pairs from the training set of the Balanced
Real Images dataset, for which the ten crowdsourced answers
were not identical (using exact string matching).

Taxonomy Design
Informed by existing literature, and an initial inspection of a
subset of the VQs, we propose a taxonomy of nine plausible
reasons as to why the answers to a visual question can differ.

We classify our nine reasons into two groups, based on
whether they originate due to issues or problems with the
QI pair, or due to issues with the ten answers. This group-
ing helps to localize the source of answer-disagreement to
either the QI pair, or the 10 answers. We hypothesize that
disagreement-resolution strategies for issues with QI pair
will be different from those for issues with answers. Since
the long-term goal is to develop automated systems that
can identify and predict answer-disagreement in the crowd,
localizing the source of crowd-disagreement will serve as
first-steps for choosing disagreement-resolution strategies.
For VQs with issues with the QI pair, we propose the

following six sources of answer-disagreement:
• Low Quality Image (LQI): image is too small, out of
focus, having poor quality, or nothing is visible.

• Answer Not Present / Guesswork (IVE): good image,
but answer to the question is not present in the image
(Insufficient Visual Evidence), so some answers reflect
guesses.

• Invalid (INV): a proper or semantically correct ques-
tion is absent [51].

• Difficult (DFF): questions that require domain exper-
tise (e.g. identifying if a skin-rash is due to bug bite),
special skills, or too much effort (e.g. counting the
number of sheep in a field full of sheep) [71].

• Ambiguous (AMB): good image and valid question,
but taken together they have more than one valid in-
terpretation, leading to multiple answers [38, 42, 67].

• Subjective (SBJ): opinion-driven questions, such as
assessing beauty, fashion sense, emotions [15, 53, 67].

For VQs with issues in the crowdsourced answers, we
propose the following three sources of answer-disagreement:

• Synonyms (SYN): answers present the same idea, but
using different words having similar meaning (e.g.
‘round’ versus ‘circular’) [51].

• Granular (GRN): answers present the same idea, but
in different levels of detail / specialization (e.g. ‘plane’
versus ‘Boeing’)

• Spam (SPM): a person inadequately answers a simple,
straight-forward visual question [25, 27, 65, 66].

Though our taxonomy can cover a wide range of disagree-
ments, we kept a reason called Other (OTH), linked to a
free-entry text-box. Workers who felt none of the above rea-
sons are well qualified, could enter what they thought was
the relevant reason.
To develop this taxonomy we employed a three step pro-

cess: (1) we examined causes cited in existing crowdsourcing
literature, and identified six of the nine labels – INV, DFF,
AMB, SBJ, SYN, and SPM; (2) we inspected VQs from the
two datasets and introduced three labels that we identified
were missing – LQI, IVE, and GRN; (3) finally, we used a pilot
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(a) (b)

Figure 2: (a) Task instructions with examples to train crowdworkers about all the disagreement-sources. (b) The user interface
crowd workers used for choosing why different answers are observed for a given QI pair, and the 10 corresponding answers.

crowdsourcing task with 100 VQs which allowed crowdwork-
ers to highlight missing labels, by either selecting the “OTH”
category, or leaving feedback comments. We did not find
any major labels appearing in the crowdworkers’ OTH an-
swers or feedback comments of the actual crowdsourcing
experiment, that we missed in the pilot study.

Crowdsourcing System
We used Amazon Mechanical Turk (AMT) platform to crowd-
source our disagreement labels. Our system worked as fol-
lows: on accepting a HIT (Human Intelligence Task) hosted
by us on the AMT platform, the user was presented with the
task instructions (Figure 2a) and a training task. The task
instructions showed examples of each of the disagreement-
source labels. The layout of the training and actual tasks are
shown in Figure 2b. It contains a QI pair, the ten (crowd-
sourced) answers, and a list of checkboxes for selecting the
labels. Checkboxes support selecting multiple labels. We in-
cluded the definition of the label in the click-area for quick
reference. The labels are grouped into the two classes (issues
with QI pair, and issues with answers, as discussed in Section
3) illustrating which disagreement-sources fall into which
category, and also guiding the crowd worker in deciding
which label(s) to select.

For the training task, the correct labels were pre-determined
by us, and the worker had to select the correct labels to pro-
ceed to the actual task. The worker was shown the correct
labels is (s)he had chosen a wrong label and clicked “Next”.
After the training task, the worker was presented with

ten VQs for annotation. The worker was made to select at
least one label in the current VQ before proceeding to the
next. There was an optional feedback form in the end. We
presented eachHIT to five crowd-workers, and thus collected
five sets of labels for each VQ.

4 DESCRIPTIVE ANALYSIS
Our first aim is to understand why people disagree when
answering visual questions. We analyze the 175,040 crowd-
sourced labels collected, to learn: (1) what are the most com-
mon reasons for answer disagreement? and (2) how many
unique reasons typically provoke answer disagreement for a
single VQ?

Common Sources of Answer Disagreement
Wefirst quantify how often differing answers from numerous
people can be explained by our nine proposed disagreement-
sources. We tally how many of the 35,008 VQs are labelled
with each disagreement-source label. To account for different
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Frequency of Disagreement Sources

1 Person Threshold 2 Person Threshold 3 Person Threshold

Dataset: VizWiz Dataset: VQA_2.0 Dataset: Combined

Figure 3: (a) - (c): Summary of why the ten crowdsourced answers of a VQ are different. The histograms show the frequency of
each disagreement-source label (Sec. 3) for (a) 29,974 VQs asked by blind people, (b) 5,034 VQs asked by sighted people, and (c)
combination of the previous two. The plots are computed based on increasing thresholds of inter-worker agreement required
tomake a disagreement-source label valid: only one (out of five) worker has to select a label, at least twoworkersmust agree on
a label, and at least three workers must agree on the label. Our findings show that ambiguous questions (AMB), synonymous
answers (SYN), and varying levels of answer granularity (GRN), are the three most popular reasons of answer disagreement.

levels of trust in the crowd workers, we report results based
on increasing thresholds of inter-worker agreement:

• Trust All: only one worker has to select a disagreement-
source label (1-person validity threshold)

• Trust Any Pair : at least two workers must agree on a
label (2-person threshold)

• Trust Majority: at least three workers must agree on a
label (3-person threshold)

Results are shown in Figure 3.

‘Ambiguous’, ‘Synonyms’, and ‘Granular’:
In both VizWiz and VQA_2.0 datasets, ambiguous questions
(AMB), synonymous answers (SYN), and varying levels of
answer granularity (GRN), are the three most common
disagreement-sources (Figure 3). For example, AMB is the
top reason for answer difference, with at least two people
selecting it as the reason for 76% of the VizWiz VQs, and
84% of the VQA_2.0 VQs (Figures 3a, b; 2-person threshold).
GRN is the closely-following second choice, with it being the
reason for 74% of VizWiz and 61% of VQA_2.0 (Figures 3a,
b; 2-person threshold). Synonymous answers (SYN) is the
third most common reason, occuring for 67% of VizWiz and
49% of VQA_2.0 questions (Figures 3a, b; 2-person thresh-
old). Therefore, a promising way to resolve a large portion
of the answer differences in VQs is to establish techniques
that handle ambiguity, synonyms, and granularity. Previous
works that trained systems to ask non-ambiguous, discrimi-
nating questions [45], improve task clarity [28], and model
ambiguity [67] may be effectively applied in such scenarios.

We visually inspected the VQs to identify plausible reasons
why these disagreement-sources arise.

In the VizWiz dataset, most ambiguous (AMB) examples
are of the form “What (object) is this . . . ?”, and AMB is se-
lected because the images show multiple objects (e.g. ‘store’,
‘shopping area’, ‘shopping cart’). AMB also occurs because
users were engaged in a dialog with the VizWiz mobile ap-
plication [10], which resulted in some questions having the
form ‘Okay, how about now?’ or ‘Okay, is this correct?’,
which are apparent continuations of previously asked ques-
tions.

Synonym (SYN) occurs when the answerers used different
words or phrases to present the same idea (‘man’, ‘guy’, ‘male
person’).
Granularity (GRN) is most observed for questions trying

to elicit colour-related information (colours of clothing,
make-up, or everyday objects), with answerers providing
varying levels of detail (‘green’, ‘green-yellow’, ‘green, yellow
and blue rims’).
In the VQA_2.0 dataset, AMB is often chosen when the

question is lengthy (e.g. ‘What weather related event can be
seen under the clouds in the horizon?’). We hypothesize that
overly long questions can be confusing [16], and therefore
people produce a diversity of answers based on their individ-
ual understanding of the question. AMB also occurs when
questions are intentionally ambiguous (e.g. ‘Q: Where are
the baby elephants? Ans 1: right, Ans 2: on the grass, Ans 3:
next to mom and dad, etc.). These intentionally ambiguous
questions are present because the VQA_2.0 questions were
created with the aim of stumping a smart robot [5].
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Answers onlyQI pair only
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Answer difference due to issues with:

(i) 1 Person (ii) 2 Person (iii) 3 Person
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(a) VizWiz (b) VQA_2.0

93%

85%

72%

(i) (ii) (iii)

90%

79%

61%

Figure 4: Proportions of VQswhere disagreement occurs due
to issues with the QI pair only (red), issues with the 10 an-
swers only (striped), or issues with both (yellow, with per-
centage), for bothVizWiz (a) andVQA_2.0 (b) datasets, across
the three validity thresholds. Most VQs have issues with
both the QI pair and the ten answers.

Synonyms (SYN) in VQA_2.0 occur in the same context
as in the VizWiz dataset, i.e. using different words having
similar meaning (‘suitcase’ versus ‘luggage’).
Granularity (GRN) is typically chosen when the descrip-

tion on an item is asked (e.g. ‘What is the person using /
holding / carrying . . . ?’). The answers, as we hypothesized
(Section 3), provide varying levels details for the item (e.g.
‘ball’, ‘tennis ball’, ‘green tennis ball’).

Other disagreement-sources:
Overall, across both datasets, we found that spam (SPM)
was the rarest disagreement-source. It affected approxi-
mately 1% of VQs in both VizWiz and VQA_2.0 (Figures 3a,
b; 2-person threshold). This is interesting because the issue
of spam has received a lot of attention in the crowdsourcing
literature (e.g. [25, 27, 65, 66] to name a few). While detecting
spam remains important, our findings suggest this line of
work will have considerably less impact than approaches
addressing the other disagreement-sources.

Since the collection of theVizWiz and theVQA_2.0 datasets
are very different – with VizWiz arising from daily visual
challenges of blind users, and VQA_2.0 containing questions
which are hard for machines to answer – we expected that
reasons for answer difference across the two datasets
would be wildly different. However, it is interesting to note
that the top four reasons (AMB, GRN, SYN, IVE) are identical
for both datasets, across all the validity thresholds (Figures 3a,
b). This suggests that there can be a wide variety of topics

that humans disagree about, but only a finite number of core
reasons why people disagree.

For example, while people agree that answers differ due to
Insufficient Visual Evidence (IVE) in both datasets, the
reasons to choose that label are largely distinct in the two
datasets. As images in the VizWiz dataset are often poorly
framed, they do not contain the answer to questions (e.g.
‘What is in the can?’ when no can is visible), resulting in IVE.
Whereas in the VQA_2.0 dataset, IVE occurs because many
VQs require deductive or speculative information, which
are not immediately evident from the image (e.g. ‘Could the
smaller giraffe reach the hay mounted on the wall?’, or ‘Is
there likely a shower in the area with the toilet and sink?’).

More generally, our disagreement-source labels also high-
light how often answer differences arise because of is-
sues with the QI pair (LQI, IVE, INV, DFF, AMB, and
SBJ), versus issues with the answers themselves (SYN,
GRN, and SPM), across both datasets. Figure 4 shows the
proportions of VQs having one or both of these issues. We
initially expected that the VQs would have only one of the
two issues (not both). However, our results suggest other-
wise. Only a handful of VQs strictly have one issue (3% with
answer-issues only, and 13% with question-issues only, for
the 2-person validity threshold). The majority of VQs (85%,
in the 2-person threshold) have answer-disagreement due
to issues with both the QI pair and the ten answers. This
indicates that trying localize the source of disagreement to
either the QI pair or the ten answers will not be very use-
ful, and disagreement-resolution strategies for VQA systems
need to consider the entire visual question along with its
answers holistically.

Number of Unique Disagreement-Sources
Next, we quantify the number of reasons leading to answer-
disagreements for each example, again employing the three
levels of trust in crowd workers: 1-person, 2-person, and
3-person thresholds. Results are shown in Figure 5.
Overall, we find that there are typically multiple reasons

for answer differences across both datasets (Figures 5: a,
b). Most commonly, i.e., for more than 55% of the VizWiz
examples, and for almost 50% of the VQA_2.0 dataset exam-
ples, there are three unique reasons (Figures 5: a, b; 2-person
threshold). From inspection, we find that these three labels
are commonly AMB, SYN and GRN, the three most com-
mon disagreement-sources. Two and four reasons are also
common for both datasets (Figures 5: a, b).

This leads us to examine (1) how often two disagreement-
source labels co-occur, and, (2) how often a label occurs on
its own, without other labels (label clarity).

We measured co-occurrence of two disagreement-source
labels di and dj using an adaptation of causal power [17] as
follows:
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Figure 5: (a) - (c): Summary of how many unique reasons are identified as the sources of answer disagreement, when five
crowd workers identify why the ten previously crowdsourced answers are different, for (a) 29,974 VQs asked by blind people,
(b) 5,034 VQs asked by sighted people, and (c) combination of (a) and (b). Across both datasets, most commonly there are three
unique reasons for answer-disagreement. Visual inspections show that these are the three most popular reasons: ‘ambiguous’,
‘synonyms’, and ‘granularity’.

Disagreement

Source 
Label

Co-occurs with: (%) Label 
Clarity 

(%)LQI IVE INV DFF AMB SBJ SYN GRN SPM OTH

SYN 0 0 0 0 89 5 0 93 0 0 7
GRN 0 0 0 0 93 13 91 0 0 0 7
INV 52 91 0 30 0 10 0 0 0 0 9
AMB 0 0 0 0 0 28 85 91 0 0 9
SBJ 0 1 10 1 75 0 13 32 0 0 25
DFF 32 67 43 0 0 2 0 0 1 0 33
LQI 0 66 39 17 0 0 0 0 8 0 34
IVE 54 0 56 28 0 1 0 0 3 0 44
SPM 28 14 1 1 0 0 0 0 0 4 72
OTH 0 0 0 0 0 0 0 0 17 0 83

Disagreement

Source 
Label

Co-occurs with: (%) Label 
Clarity 

(%)LQI IVE INV DFF AMB SBJ SYN GRN SPM OTH

INV 2 94 0 14 21 27 0 0 0 0 6
SYN 0 0 0 0 83 0 0 92 0 0 8
GRN 0 0 0 0 87 0 82 0 0 0 13
AMB 0 0 7 0 0 5 66 77 0 0 23
LQI 0 58 30 20 0 0 0 0 3 3 42
IVE 19 0 47 24 0 22 0 0 2 0 53
DFF 12 44 13 0 0 0 0 0 3 1 56
SBJ 0 26 16 0 9 0 0 0 0 0 74

OTH 12 0 0 1 0 0 0 0 13 0 87
SPM 5 12 0 7 0 0 0 0 0 5 88

(a) VizWiz

(b) VQA_2.0

Figure 6: Co-occurrences of the disagreement-source labels
for (a) VizWiz and (b) VQA_2.0 datasets (1-person threshold).
Label clarity denotes how often a label occurs alone. The
most frequently occurring labels – AMB, SYN, and GRN –
also co-occur with each other. These labels have the lowest
clarity, i.e. they rarely occur alone.

If the co-occurrence between labels di and dj is x , then in
all the VQs where di is chosen, dj is chosen in x% of them.

We chose this metric (instead of, e.g., Pearson’s correlation
coefficient) because this helps to correct for self-correlations,
as well as for cases where dj is chosen in the absence of
di , and vice-versa. Further mathematical explanations are
presented in [17, 49].

We also measured the clarity of a label d as follows:
If the clarity of a label d is x , then in all the VQs where d

is chosen, no other label is chosen in x% of them.

In other words, disagreement-source d occurs alone (or,
is ‘clearly expressed’) in only x% of the VQs it is selected. In
the rest (100 − x)% of the VQs, d co-occurs with at least one
other label. For brevity, we discuss these metrics for 1-person
validity threshold only. Results are shown in Figure 6, for
all possible pairs of labels, separately for the VizWiz and the
VQA_2.0 datasets.
In both VizWiz and VQA_2.0, the labels SYN (synonyms)

and GRN (granular) have some of the highest co-occurrences
with other labels. For example, in VizWiz, for all the VQs
where SYN was chosen, GRN co-occurs for 93% of those
questions, followed by AMB for 89%. Likewise, in all the
question where GRN occurs, AMB occurs in 93% of them,
and SYN occurs in 91% of them. Thus, the labels SYN and
GRN were commonly chosen together by the workers. While
synonyms meant workers found words having similar mean-
ing (e.g., ‘round’ vs. ‘circular’), granularity meant workers
found answers explaining the same thing in greater detail
(e.g., ‘mostly red’ vs. ‘red, black and blue’). On inspection we
found that these labels commonly occur together because the
when 10 answers do provide varying levels of detail, they
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often do so using synonyms (e.g. ‘money’, ‘currency’, ‘10
dollar bill’).

In the VQA_2.0 dataset, questions with INV (invalid ques-
tion) label has IVE (insufficient visual evidence, i.e. answer
not present in image) occurring in 94% of cases. Since many
questions are intentionally designed to outwit machines, the
answers to such questions may not be immediately evident
from the image, and so require some deductions. Hence,
crowd workers may consider questions that were invalid
(INV) as also having insufficient visual evidence (IVE).

5 PREDICTINGWHY ANSWERS DIFFER
Having seen that answer disagreements can arise for differ-
ent reasons, we next explore a novel problem of predicting
why the answers will differ, given the QI pair and optionally
the answers. We introduce two machine learning models,
and describe the experiments to assess their accuracy in
making predictions.

Machine Learning Setup
Problem Definition and Evaluation: We pose the task

of predicting answer-disagreement-source(s) as a multi-label
binary classification problem. The input is a QI pair and op-
tionally the crowdsourced answers. The output is a binary
value for each of the 10 disagreement-source labels, indicat-
ing whether that label is the reason for answer-disagreement
of the VQ. In other words, we consider each disagreement
label as a distinct binary classification problem. We evaluate
each classifier using a precision-recall curve, and the average
precision score.

Ground Truth: We compute binary ground truth labels
for all the 10 disagreement-source labels for each VQ. Specifi-
cally, we examined the five crowdsourced labels per VQ, and
considered a disagreement-source label as ‘1’ (i.e present), if
at least two people selected that label. The 2-person threshold
is a reasonable choice when five answers are crowdsourced,
as indicated by [12, 47].

Train/Validation/Test Split: We used the whole VizWiz
dataset, including the QI pairs where all answers were iden-
tical (i.e., 3% of the total VQs) to grow the size of the train-
ing set. Employing the train/validation/test split from [33],
we have 20,000 training (65%), 3,173 validation (10%), and
7,988 test (25%) samples. For the 5,031 VQs from the VQA_2.0
dataset, we introduced a 65/10/25 split which resulted in
3,230 training, 513 validation, and 1,291 test examples.

Baseline: To the best of our knowledge, no prior work
has tried to predict the reason(s) why a VQwill have different
answers. So the best option available today is to randomly
guess the reasons. Thus, we compare our system against a
Status Quo predictor, which randomly assigns a binary value

for each of the ten disagreement-labels, to simulate random
guessing.

Machine Learning Models
RandomForest: Weproposed a random forest [13]model.

We chose to extract features that describe the image, ques-
tion, and 10 answers.

As image features, we use the Computer Vision API1 from
Microsoft Cognitive Services to extract: (a) number of cate-
gory labels assigned to the image (‘outdoor’, ‘abstract’, ‘food’,
etc), (b) number of tags assigned to the image (‘pizza’, ‘sign’,
‘water’, ‘television’, etc.), (c) number of distinct colours de-
tected in the image, and (d) number of faces detected in the
image. Intuitively, the number of categories and tags asso-
ciated with an image informs two things: (1) the number of
different ways an image can be interpreted (e.g. ‘sitting at
a table’ versus ‘eating’), and (2) the number of objects in an
image competing for an person’s attention. When an image
is assigned multiple tags like ‘sitting at a table’ and ‘eat-
ing’, then a question of the form ‘What is the person doing?’
will be considered ambiguous (AMB), as the answer could
either be ‘sitting’ or ‘eating’ or both. Also, if an image is
associated with a number of categories and tags, it indicates
there are multiple salient objects in the image competing for
the viewer’s attention. Therefore, answers to ‘What is this?’
questions will result in a variety of answers, depending on
which object attracts the viewer’s attention. This will give
rise to synonyms (SYN) and varying granularity (GRN) in
the answers.

For question features, we considered the following: (a) num-
ber of words in the question, as from Section 4 we saw that
lengthy questions tended to be ambiguous, (especially for
VQA_2.0), (b) whether the word ‘colo(u)r’ is present in the
question, as a binary label, and (c) the most common answer-
type from the 10 crowdsourced answers [32, 33], namely
numeric, yes/no, other, unanswerable. Intuitively, the most
common answer-type can indicate whether answer disagree-
ment can occur. For instance, a generic ‘other’ question has
more chance to produce a wide variety of answers, than a
‘yes/no’ question.

For answer features, we counted the number of words in
each of the ten answers, as difference in the number of words
indicates a difference in the answer text.

We used the random forest implementation of Scikit-Learn
[55], with 1,000 trees, ‘balanced’ class-weights (so that all
output labels get equal priority, despite class imbalance in
training data), and maximum tree-depth of 20.

Deep Learning: Given the many successes of deep learn-
ing systems, we also developed a deep learning model for
1https://azure.microsoft.com/services/cognitive-services/computer-
vision/
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Figure 7: Performance curves of our random forest model, for (a) VizWiz and (b) VQA_2.0 datasets. The legends show average
precision scores of our model (left), and Status Quo baseline (right), for each label.

our prediction problem. We adapted our architecture from
the hybrid neural network proposed in [5]. It takes as input
the raw image, question, and (optionally) the 10 answers.
The text inputs are converted to numeric form using GloVE
(Global Vectors for Word Representation) pre-trained 100-
dimensional word embedding [56], which was trained on the
entire text corpus of Wikipedia 2014. Then they are passed
through a 256-dimensional Long Short TermMemory (LSTM)
[30] model. The image is encoded using the popular VGG16
[62] pre-trained vision model, which takes a 224 × 224 colour
image as input, and outputs a 4096-dimensional vector. The
image and text encodings are then combined and passed
through two fully connected layers with ReLu (Rectified Lin-
ear Unit) activation functions, and are finally output via a
10-node sigmoid activated output layer, corresponding to 10
probabilities for each disagreement-source label.

Performance Analysis
Overall Performance: Wefirst examine the performance

of the models to predict the disagreement-source directly
from the VQ and answers. Figure 7 shows the precision-recall
curves for the proposed random forest model as well as the
average precision scores for it and the Status Quo approach.
As observed, the random forest model outperforms Status
Quo for most disagreement-causes.
For the VizWiz dataset, Ambiguity (AMB), Synonyms

(SYN) and Granularity (GRN) are predicted with the highest
average precision (Figure 7a). The model success appears to
correlate with most frequent disagreement-sources in the
dataset, probably because there are more training examples.
The model performs worst for detecting spam (SPM) for

the VizWiz dataset. Intuitively, this makes sense since a
worker’s choice to return bogus results is probably inde-
pendent of the task at hand. Hence, we would not expect
that information about the QI pair or the answers will help
in deciding when a worker will submit spam.

While the model does demonstrate some predictive power
for detecting difficulty (DFF) and subjectivity (SBJ), it is a
less strong predictor compared to AMB, SYN and GRN. This
is may be because detecting whether a question is difficult or
subjective requires understanding the meaning of the ques-
tion, which is possible through more sophisticated natural
language processing and semantic analysis, rather than sim-
ple statistical features such as word count or presence of cer-
tain words like ‘colour’. Another reason for non-performance
is possibly the lack of sufficient training examples (e.g. less
than 10% in VizWiz).

For the VQA_2.0 dataset, performance is similar to VizWiz
with respect to labels AMB, SYN, GRN, IVE, DFF, SPM and
OTH. Significant differences are observed for LQI and SBJ
labels. We hypothesize the diffence in LQI performance is
due to the nature of the images themselves. While images in
VizWiz are typically more blurred or ill-formed when they
are LQI and so easier to detect, images from MS-COCO [46]
typically share with other images in the dataset that they are
high photographic quality even when they are LQI.
For completeness, we include the precision-recall curves

for the deep learning model in the Supplementary Materials.
However, we exclude it from the main paper as the model
was unable to perform better than Status Quo. We attribute
the poor performance to the limited amount of training data
and huge class imbalance. Specifically, the relatively low
number of training samples (20,000 as opposed to millions
for large-scale systems) makes it difficult to effectively learn
the weights necessary for this end-to-end machine-learning
task. This issue is compounded by the huge class imbalance
of AMB, SBJ, and GRN, where a standard ‘yes predictor’
for those three labels would already yield promising perfor-
mance; i.e. predict AMB, SYN and GRN for all samples.
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VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA VizWiz VQA

QI+A 0.56 0.06 0.68 0.67 0.42 0.46 0.10 0.12 0.89 0.90 0.07 0.22 0.89 0.83 0.94 0.86 0.01* 0.00* 0.01 0.01
QI 0.43 0.06 0.61 0.65 0.34 0.44 0.08 0.11 0.82 0.90 0.06 0.21 0.81 0.80 0.87 0.84 0.01* 0.00* 0.01 0.01
Q 0.46 0.07 0.62 0.66 0.34 0.49 0.09 0.11 0.78 0.90 0.06 0.17* 0.80 0.81 0.85 0.84 0.02 0.01 0.01 0.01
I 0.24 0.05* 0.32 0.42 0.16 0.23* 0.05 0.11 0.74 0.88 0.05 0.16* 0.66 0.56 0.74 0.66* 0.01* 0.01 0.01 0.01

Status 
Quo 0.23 0.07 0.32 0.41 0.15 0.26 0.05 0.09 0.74 0.88 0.05 0.18 0.64 0.55 0.72 0.67 0.02 0.01 0.00 0.00

(a)

(c)

(e)

(b) (d)

(f) (g)

VQA_2.0 (QI+A) VQA_2.0 (QI) VQA_2.0 (Question Only)

VQA = VQA_2.0  dataset

VizWiz (QI+A) VizWiz (QI) VizWiz (Question Only)

Figure 8: (a): Average precision scores of our random forest model, against the Status Quo (random) baseline, for VizWiz and
VQA_2.0 datasets. The figures are for four ablations: training and testing on question, image and answer features (‘QI+A’),
question and image features only (‘QI’), question features alone (‘Q’), and image features alone (‘I’). Italicized values with
asterisk (*) indicate instances where our model performed worse than Status Quo. (b) - (g): Importance of our handcrafted
features for predicting disagreement-sources, as returned by our random forest model, trained on ‘QI+A’, ‘QI’ and ‘Q’, for the
VizWiz (b)-(d) and VQA_2.0 (e)-(g) datasets. Question, Image and Answer feature-names start with Q:, I:, and A#: respectively.

Predictive Cues: We also conducted ablation studies to
investigatewhat cues aremost predictive of the disagreement-
source, using the top-performing random forestmodel. Specif-
ically, the four ablations we trained on are (a) question, image

and answer features (‘QI+A’), (b) question and image fea-
tures only (‘QI’), (c) question features alone (‘Q’), and (d)
answer features alone (‘A’). We also report the importance of
individual features in Figures 8(b)-(c). Specifically, it reveals
the learned importance of each feature for three ablations of
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the model, across both datasets. The importance values are
obtained from the Scikit-Learn implementation of the ran-
dom forest classifier. Specifically, we used the “gini impurity”
criteria [14]
Figure 8(a) shows the average precision results for these

four ablations of our random forest model, and the Status Quo
baseline across both VizWiz and VQA_2.0 datasets. Overall,
reducing the number of input features causes a performance
deterioration. Still, except for ‘I’, all variations perform better
than Status Quo for all the labels across both datasets.

As noted above, for the VizWiz dataset, Ambiguity (AMB),
Synonyms (SYN) and Granularity (GRN) are predicted with
the highest precision. This can be partially due to the high
frequency of these labels in the dataset. However, except for
‘I’, all other variants perform significantly better than Status
Quo baseline. It is interesting that even without the answer
features, our model is able to predict answer related issues
like SYN and GRN from ‘QI’ and ’Q’ features only. This can
be attributed to the features: number of image tags, number
of image categories, and number of words in the question,
as seen from Figures 8(c) - (d). As we hypothesized, count
of image tags and categories inform about the number of
different salient objects in the image, and more objects lead
to answers with synonyms and varying granularity.

Low Quality Image (LQI) and Insufficient Visual Evidence
(IVE) are predicted fairly well by ‘QI+A’, ‘QI’ and ‘Q’. We be-
lieve that the combination of the features: number of image
tags, and count of words in the question, play a significant
role here. A question with low word count (e.g. ’What is
this?’) is probably not invalid by itself. However, an image
with low tag count is possibly blurred, or does not contain
enough identifiable entities, resulting in LQI. A combina-
tion of low tag count in image, and high word count in
question suggests that IVE is about to occur. Since the ‘Q’
ablation performs better for these labels than ‘I’, we believe
that some other question features (like a combination of the
four answer-type binary variables) may also play a role. We
hypothesize that the performance for LQI and IVE drops
significantly for ‘I’, since these additional question based
features are not available.
We hypothesized in Section 4 that a VQ seeking colour

related information leads to particular disagreement-sources.
So we included the two colour related features: count of dis-
tinct salient and accent colours present in the image, and
whether the word ‘colo(u)r’ is present in the question. In-
terestingly for both datasets, presence of ‘colo(u)r’ is not as
important as the number of colours present in the image
(Figure 8b,c,e,f). This indicates that answer disagreement
occurs with higher probability if many different colours are
visible in the image. For answering such VQs, people will
use different names for the visible colours, or will probably

list the colours in varying order, even if the question does
not explicitly mention the word ‘colo(u)r’.

6 EXISTING SOLUTIONS
Various solutions exist to resolve crowd disagreements that
arise due to different reasons. Yet, currently a system designer
has no way of knowing which solution(s) to apply, without
first reviewing the VQ with answers, and then identifying
the reason(s) for which the disagreement occurred. Using
our proposed taxonomy, a trained VQA system will be able
to detect which specific reason(s) will cause disagreement(s)
to occur, and thereby recruit appropriate disagreement res-
olution solution(s). We discuss this mapping between our
taxonomy of disagreement causes, and some of the existing
solutions below.
Low Quality Images (LQI) occur due to poor resolution,

camera framing error, or lack of focus. Solutions like blur de-
tection and correction [48, 61], image-sharpening [52, 54, 58],
and tools supporting blind photography [39] (esp. forVizWiz)
can be applied in this scenario. For invalid questions (INV),
solutions include question-text processing [64], followed by
automated techniques for grammatical error detection [21]
and correction [19]. Difficult visual questions (DFF) can be
tackled by combining methods for assessing difficulty of tex-
tual questions [8] and difficulty of image annotation tasks
[71]. Ambiguity (AMB) can be handled using solutions pro-
posed for measuring image specificity (i.e. whether an image
elicits a converging textual description from the crowd) [38],
and for determining the different shades of meaning present
in textual product label attributes [42]. Subjectivity (SBJ) can
be modelled and resolved by techniques proposed by [53, 68].
Synonymous answers (SYN) due to using different words hav-
ing same meaning, or due to spelling errors, can be detected
and corrected using methods described by [9, 18, 26]. Lastly,
spam answers and malicious behaviour of crowdworkers
(SPM) are discussed at length by [27, 66], while solutions for
spam prevention and resolution are proposed by [25, 65].

7 CONCLUSION
We proposed a taxonomy of nine reasons why answers to
VQs vary and a novel machine learning problem of automati-
cally predicting directly from a VQ (plus optionally answers)
why answers will differ. We crowdsourced “disagreement-
source" labels for VQs asked by blind and sighted people
and found ambiguity in the question, synonyms in the an-
swers, and varying granularity in the answers are the pri-
mary reasons answers differ. Our experiments with two ma-
chine learning models demonstrate it is possible to predict
why answers will differ. We will publicly share our new
dataset and all code to facilitate future extensions of this
work.
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