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ABSTRACT
We investigate the relationship between search behavior, eye -
tracking measures, and learning. We conducted a user study where
30 participants performed searches on the web. We measured their
verbal knowledge before and after each task in a content-independent
manner, by assessing the semantic similarity of their entries to ex-
pert vocabulary.We hypothesize that differences in verbal knowledge-
change of participants are reflected in their search behaviors and
eye-gaze measures related to acquiring information and reading.
Our results show that participants with higher change in verbal
knowledge differ by reading significantly less, and entering more
sophisticated queries, compared to those with lower change in
knowledge. However, we do not find significant differences in other
search interactions like page visits, and number of queries.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Web-based interaction.

KEYWORDS
search as learning; measuring knowledge change; human informa-
tion behavior; eye-tracking
ACM Reference Format:
Nilavra Bhattacharya and Jacek Gwizdka. 2019. Measuring Learning During
Search: Differences in Interactions, Eye-Gaze, and Semantic Similarity to
Expert Knowledge. In 2019 Conference on Human Information Interaction
and Retrieval (CHIIR ’19), March 10–14, 2019, Glasgow, Scotland, UK. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3295750.3298926

1 INTRODUCTION
We investigate the relationship between search behavior, eye gaze,
and learning. Marchionini described information seeking as “a pro-
cess, in which humans purposefully engage in order to change
their state of knowledge” [19]. Thus information search is driven by
higher-level human needs. We can consider information seeking as
a process that changes the state of a searcher’s knowledge. This con-
sideration points us to works that draw upon strong ties between
information search and learning. For example, exploratory search
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has been described as search as learning [20]. More recently, Jansen
et al. [16] noted that “a learning theory may better describe the in-
formation searching process than more commonly used paradigms
of decision making or problem solving”. I-LEARN model created by
Neuman, from the learning theory perspective, attempts to connect
learning theory with information science perspectives [22]. The
model posits “the use of information as the fundamental building
block for learning“. If we consider learning as an integral part of
information search process, the challenge then is how to measure
learning. We can turn to the educational psychology literature, but
we should first note that measuring a searcher’s learning is actually
not new in our field. For example, Pirolli et al. [26] measured user
learning in their evaluation of Scatter/Gather exploratory search
interface. Learning was assessed by examining gains in a user’s
understanding of the topic structure, and in a user’s ability to for-
mulate effective queries. Possible operationalizations of learning
measurement include measures of a user’s ability to formulate more
effective queries, a user’s familiarity with concepts, and relation-
ships between concepts.

Our interest is in the learning that takes place at the bottom
level of the modified Bloom’s taxonomy – the remembering and
factual knowledge level [1]. Therefore, we operationalize learning
as changes in verbal knowledge [17] from before to after a search
session. One goal of our work is to construct learning measures that
require minimal input from users, and, for example, do not require
users to answer topic-specific comprehension tests. We use two
types of learning measures, a simple topic-independent measure,
and a measure based on semantic similarity with expert vocabulary.
Our expectation is that searchers who invest more search-effort,
and who consume more result pages, learn more. In other words,
their topical vocabulary improves and becomes more similar to
expert vocabulary. Search-effort is conceptualized as a two part,
multiple-component construct: (a) search interaction (i.e., visiting
SERPs and result pages, entering queries); and (b) acquiring text
from web pages by reading (i.e., number and duration of reading
fixations, length of reading sequences, number and length of eye
regressions).

2 BACKGROUND
Learning, in the context of interactive information retrieval, is inter-
esting for a few reasons. Assessment of learning outcomes resulting
from search, are a good candidate for more comprehensive, user-
oriented evaluation measure of information retrieval systems. In
particular, the need to perform evaluations that go beyond indi-
vidual query interaction has been noted by many researchers, and
some approaches have been proposed (e.g., most recently by Raman
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et al. [27]). Measuring learning on whole, or multiple-session search
offers one possible approach.

However, assessing learning typically requires collecting explicit
(knowledge-based) responses from users. Collecting such responses
may be disruptive, and while it works well in controlled research
conditions, it is hard to transfer this approach to the field. Two ques-
tions arise: 1) which implicit measurement techniques of learning
could be used; and 2) which techniques work outside the laboratory.

With recent technological advances in (psycho-physiological
and brain) sensing techniques, tools that enable implicit assessment
of changes in a user’s cognitive state are nowmore readily available.
One such tool is eye-tracking. Prior work [4] demonstrates feasi-
bility of using eye gaze patterns to assess differences in the levels
of users’ domain knowledge (at least for text search). This work
indicates a possibility of using eye tracking to measure changes in
a searcher’s learning. One advantage of using measurement tech-
niques based on eye tracking is the possibility of scaling up to larger
numbers of users. If the current trend in dropping eye tracker prices
continues, we can expect that in-not-so-distant-future, eye trackers
will become a selectable option for many computers, just like get-
ting a larger hard drive. (A reasonably good, but slow, eye tracker
currently costs few hundred USD). This line of research is still in
early development and we need more studies to confirm reliability
and to examine validity of using eye gaze patterns in measuring
learning. Our work aims to contribute to these developments.

Past efforts have tried to gauge the existing domain knowledge
or expertise of a user from interaction features. Wildemuth [30]
observed that with change in expertise, novices tend to replicate
the search tactics employed by domain experts. White et al. [29]
predicted domain expertise from interaction measures like web-
site visits, dwell time, focusing on single vs. multiple topics on
search engine result pages (SERPs), etc. Cole et al. [4] identified
that behavioral features were topic-agnostic predictive cues of a
user’s domain knowledge. Further, Zhang et al. [33] identified a
separate set of features, like the rank of search-result rank consid-
ered relevant, and average query length, as being predictive of a
user’s knowledge. Other works have tried to measure the change
in knowledge over a task-span, and correlate it with interaction
measures. Collins-Thompson et al. [6] observed that diversity in a
user’s queries is an indicator of increased knowledge gain. Eickhoff
et al. [7] studied correlations between search interactions, visited
SERP features, and learning needs related to declarative or proce-
dural knowledge. Vakkari [28] presented a set of features that are
predictive of knowledge change during searches.

With the advent of the ‘Search-as-Learning’ (SAL) sub-field,
new research has also investigated the measurement of knowledge
change during online information search tasks [11, 12, 31, 32]. For
instance, Gadiraju et al. [11] and Yu et al. [32] measured pre- and
post-task knowledge levels using online tests, where participants
had to choose between ‘True’, ‘False’ and ‘I don’t know’ options for
a series of factual questions related to the topic of the search task.
Knowledge change was quantified as the difference between the
pre- and post-task scores. Yu et al. [32] also proposed an automated
system to predict this differential knowledge-change measure us-
ing a variety of interaction features as predictors. However, the
drawbacks of this approach are that (a) it requires creation of do-
main specific knowledge-tests, (b) users get exposed to the topics

of the task before searching starts, which may interact with the
pre-task knowledge levels, and (c) in multiple-choice questions,
users may select the correct answers by guessing. Ghosh et al.
[12] takes a different approach for pre- and post-task assessments,
by asking the participants about their perceived levels of existing
knowledge, task difficulty, newly gained knowledge, and interest
in the topic, all measured using five-point Likert scales. Knowledge
change was operationalized as a paired sample t-test to determine
if self-perceived existing knowledge and self-perceived new knowl-
edge differ significantly. Although this approach avoids the need
of domain specific tests, and exposing users to task-topics, it re-
lies heavily on the user’s perception of his/her own knowledge
change. Such perceived measures are subjective to users, and may
not provide a truly quantifiable indication of knowledge change.

In light of the above, we see that past works have either studied a
limited range of learning objectives, or considered limited predictive
features. Many of them required domain-specific information as
well. In this work, we aim to contribute by investigating knowledge-
change assessment metrics that (a) do not require domain-specific
comprehension tests, (b) do not expose the user to the topic of
the search in the pre-task assessment, and (c) attempt to assess
a user’s true knowledge-level (with respect to expert knowledge)
with minimal scope for guessing or subjective differences.

3 METHOD
3.1 Experimental Design
We conducted a controlled, within-subject user study with 30 partic-
ipants (16 females; mean age 24.5 years), who were asked to search
for health-related information on the internet. We pre-screened
our participants for (a) native-level English familiarity (to minimize
influence of varied levels of English familiarity on their eye move-
ments and fixations), (b) non-expert topic familiarity (so that they
did not have extensive prior knowledge of the topic for which we
were trying to measure their learning on search), and (c) uncor-
rected 20/20 vision (to minimize problems with eye-tracking). In the
pre-screening survey, all participants reported using the internet
for longer than an hour everyday, and daily usage of Google search
engine. The majority of the participants had been using Google for
longer than seven years, and considered themselves proficient in
searching for information online.

3.2 Task Description
To investigate changes in vocabulary knowledge, each participant
performed two information search tasks on health-related topics
in counterbalanced order. These two tasks simulated a work-task
approach by triggering realistic information-need for participants
[2], as they were asked to find useful information for helping a
family member and a friend. The tasks were designed to be complex,
and contained multiple facets. The prompts for each task are:

Task 1: Vitamin A: Your teenage cousin has asked your advice in regard to
taking vitamin A for health improvement purposes. You have heard conflicting
reports about the effects of vitamin A, and you want to explore this topic to
help your cousin. Specifically, you want to know:

(i) What is the recommended dosage of vitaminA for underweight teenagers?
(ii) What are the health benefits of taking vitamin A? Please find at least 3

benefits and 3 disadvantages of vitamin A.



(a) (b)

Figure 1: Screenshots of our system: (a) Customized Google SERP, with 7 results per page, and no advertisements. (b) A
‘CONTENT’ page showing our customized left-sidebar, for viewing the task-prompt, creating bookmarks and taking notes.
Green/yellow patches in (a) are eye-tracking fixation heatmaps. The circle with number in (b) is an eye-fixation with duration.

(iii) What are the consequences of vitamin A deficiency or excess? Please find
3 consequences of vitamin A deficiency and 3 consequences of its excess.

(iv) Please find at least 3 food items that are considered as good sources of
vitamin A.

Task 2: Hypotension: Your friend has hypotension. You are curious about this
issue and want to investigate more. Specifically, you want to know:

(i) What are the causes of hypotension?
(ii) What are the consequences of hypotension?
(iii) What are the differences between hypotension and hypertension in terms

of symptoms? Please find at least 3 differences in symptoms between
them.

(iv) What are some medical treatments for hypotension? Which solution
would you recommend to your friend if he/she also has a heart condition?
Why?

3.3 Apparatus
The main search tasks were performed using Internet Explorer. The
tasks started from a customized version of the Google search engine
interface (Fig. 1a), and the browser had an additional sidebar on the
left (Fig. 1b). In our custom-written search engine interface, search
results were retrieved from Google in real-time in the background
by a proxy server. A search engine result page (SERP) controlled
the display of the search results, by showing only seven results per
page. This ensured that eye fixations were accurately tracked on
each individual result in the SERP, and no advertisements could
distract our participants. We chose seven results per page as this
allowed the search results to have an optimum increased font size
(and thereby increased visual angle), so that we could track eye-
movements at the level of individual elements of search results
surrogates. All other webpages (which we call ‘CONTENT’ pages)
were displayed in their true form.

The sidebar on the left showed (on demand) the current search
task prompt on the top, and had bookmarking and note-taking

sections below. Bookmarking allowed the participants to save the
URLs of webpages they opened and considered relevant. The list
of bookmarked pages were available on the sidebar all throughout
a search-task session, and a bookmarked page could be re-opened
instantly by clicking the bookmark. The note-taking feature allowed
participants to write and / or copy-paste relevant text from the
webpages they visited. When the participants were performing
the search tasks, we recorded their interactions with the computer
system. This included eye gaze, keystrokes, mouse clicks, and other
activities like bookmarks, notes, search queries, URLs of pages
visited, etc., as well as the timing and duration of these activities.
Eye gaze was captured using a Tobii TX-300 eye-tracker (Tobii
Technology AB, Sweden) controlled by iMotions software (iMotions
A/S) that also captured all user interactions.

3.4 Procedure
Each experimental session started with the assessment of partici-
pant’s working memory capacity (WMC) using memory span task
[8] and health literacy using the eHealth Literacy Scale (eHEALS)
[23]. Next, the participants performed a training task to familiarize
themselves with the custom user interfaces (bookmarking and note-
taking), and the study procedure. After the training, participants
started the main search tasks. Task steps are illustrated in Fig. 2.

Each task startedwith a Pre-task knowledge assessment, to gauge
the existing or initial knowledge of the participant for the task
(Fig. 2a). The prompt for the pre-task assessment was as follows:

Think of what you already know on the topic of this search and list as many
phrases or words as you can that come to your mind. For example, if you know
about side effects, please do not just type the phrase "side effects", but rather
type "side effects" and then list the specific side effects you know about. Please
list only one word or phrase per line and end each line with a comma.
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Pre-task Knowledge
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Figure 2: Procedure for each of the search tasks: (a) pre-task knowledge assessment, (b) searching for information usingGoogle,
(c) visiting search result webpages, (d) bookmarking webpages that contain relevant information, and also taking notes, and
(e) assessing the knowledge change through a post-task questionnaire.

After the pre-task assessment, the online searching started. Par-
ticipants searched for, and visited publicly available webpages using
Google. We asked them to bookmark a webpage if they considered
it relevant to their task, and (optionally) to take notes of the infor-
mation found on the webpage with respect to information need
prompted by a task scenario. The bookmarking and note-taking
features were mechanisms to help participants engage more in the
simulated tasks in the lab (motivating task scenarios, as discussed in
[2]). Since the tasks motivated the participants to find information
for helping their friends and family, the notes were meant to help
them remember and share the information they found.

We classified each visited webpage as a ‘SERP’ (Search Engine
Result Page) or a ‘CONTENT’ page, based on whether it was a
Google SERP, or any other page, respectively. A CONTENT page
was further marked as ‘RELEVANT’, if the participant bookmarked
the page.

At the end of each task, the participants completed a Post-task
knowledge assessment. This served as the final check of the partic-
ipant’s knowledge for the topic of the search session. The prompt
for the post-task assessment was as follows:

Now that you have completed this search task, think of the information
that you found and list as many words or phrases as you can on the topic of the
search task. This will be short ANSWERS to the search questions. For example,

if you were searching for side effects, please do not just type the phrase "side
effects", but rather type "side effects" and then list the specific side effects you
found. Please list only one word (or phrase) per line and end each line with a
comma.

After the Post-task assessment for each task, participants were
presented with the NASA-TLX (Task Load Index) [15], which mea-
sured their perceived workload invested in the search task.

A key difference of our study from recent works like [11, 32] is
that we aimed to capture knowledge change in the form of free-
recall from memory, so that it is independent of the task topic.
(Although participants took notes while searching, they were not
allowed to consult these notes during the post-task assessment, as
we were trying to capture how much of the information they learnt,
and remembered). There was no time-limit on any portion of the
task, including the Pre- and Post-task knowledge assessments. A
session typically lasted for 1.5 to 2 hours. On completion of the
entire study session, each participant received $25.

4 MEASURES
We have calculated our variables for each search task separately. We
argue that for a user having minimal topical expertise, knowledge
of disparate topics (e.g. Vitamin A vs. hypotension) are independent



of each other. Therefore, a user-task pair is our unit of analysis, and
all the measures described below are calculated for each of such
user-task pairs.

4.1 Knowledge Change Measures (KC)
Our aim was to measure the difference in a user’s knowledge of
vocabulary on a searched topic, before and after a search task. So
we needed two measurement points, and deliberated on a variety
of possibilities for assessing participants’ knowledge levels. Fact-
checking questions before a task were considered inappropriate, as
we wanted to avoid exposing the participant to the topic’s content
before they start the search. Since the tasks were conducted on
the open web, we could not use methods like Sentence Verification
Technique (SVT) [10], which requires creation of questions for each
document. Our participants were not experts on the topics, hence
concept maps and mind-mapping were deemed inappropriate, as
they are particularly difficult to score for non-experts. Thus we
settled for the Pre- and Post-Task knowledge assessments, where
participants were asked to free-recall as many words or phrases on
the topic of the task as they could, without time limit.

4.1.1 Simple Knowledge Change Measure: Our first knowledge
changemeasure,KC_Simple, is a simple, topic-independentmeasure.
It was calculated as the relative difference in the number of items
(words or phrases) entered by users before and after each task.

4.1.2 Expert Knowledge Creation: In order to support more sophis-
ticated measure of knowledge change, we created a vocabulary of
expert words and phrases on the search task topics. The vocabu-
lary was crowd-sourced on the Amazon Mechanical Turk (AMT)
platform, and then verified in consultation with a medical doctor.
A separate question for each facet of our search tasks was admin-
istered on AMT. The questions asked crowd-workers to enter as
many words or phrases as they could on the topic of a task facet,
along with providing links to web-sources for this information. We
received responses from 156 and 91 crowd-workers on Task 1 and
2, respectively. The responses yielded 474 and 171 words / phrases
on the topics of Task 1 and 2. After removing duplicates, the lists
were reviewed and cleaned in consultation with a medical doctor.
The final result was two lists of 115 and 105 words or phrases, for
Task 1 and 2, respectively.

4.1.3 Semantic Similarity with Expert Knowledge: Semantic sim-
ilarity between two pieces of text (words / phrases / sentences /
documents) measures how similar the two texts are, in terms of
their meaning, rather than their syntactical representation (e.g.
their string format) [14]. To measure the knowledge-change of
our participants, we calculated how much their Pre- and Post-task
free-recall entries were semantically similar to our curated expert
vocabulary. For this purpose we used the state-of-the-art Univer-
sal Sentence Encoder [3] from Google’s TensorFlow Hub, which
encodes natural texts into a 512-dimensional embedding vector.
We did not use popular word-embedding models like word2vec
[21] and GloVe [25] because they are more suited for single word
comparisons, while we were measuring similarity between phrases
and/or sentences. The universal sentence encoder is pre-trained and
optimized for greater-than-word length text, like sentences, phrases
or short paragraphs. Before encoding our texts (participant input or

expert knowledge) into sentence embedding vectors, we removed
stopwords from the text using the English stopword list from the
popular python package, Scikit-Learn [24]. Instead of using the
raw cosine value of similarity between two sentence embedding
vectors u and v as a measure of their semantic similarity, we used
the angular similarity between the vectors, sim(u, v) (Eqn. 1), as it
provides better discrimination power than the raw cosine value.

sim(u, v) =
(
1 − arccos

(
u · v

∥u∥ ∥v∥

)
/π

)
(1)

First we calculated angular similarity between Pre-task entries
and expert vocabulary pre_exp_sim = sim(pre_task, expert), and
angular similarity between Post-task entries and expert vocabulary
post_exp_sim = sim(post_task, expert),. Then we calculated our
knowledge changemeasures by taking the difference (KC_Sem_Diff )
between them (Eqn. 2), as well as their ratio (Eqn. 3) (KC_Sem_Ratio).

KC_Sem_Di f f = post_exp_sim − pre_exp_sim (2)

KC_Sem_Ratio =
post_exp_sim
pre_exp_sim

(3)

4.2 Eye-tracking Measures (ET)
The eye-tracking variables we use reflect the process of reading.
We calculated them on SERPs and CONTENT pages, and separately,
on CONTENT pages relevant to a task, since we assume that par-
ticipants learn most from reading such web pages. We label eye
fixations as “reading”, when a person is reading words sequentially
in a horizontal line on a web page (in contrast with scanning text,
when eyes are being fixated on isolated words) [4, 5], and we use
only “reading fixations” in our measures.

We calculated total duration, and count of fixations on all pages
of given a type, as well per page. We also calculated total length
of reading sequences (in pixels), number of eye regressions (when
eyes are moving back to fixate on a previously seen word), and the
length of regressions (in pixels).

4.3 Search Interaction Measures (SI)
Search behavior was characterized by typical measures that in-
cluded number of visited SERPs and CONTENT pages (we counted
visits as well as revisits that were longer than 300ms and associ-
ated with at least two fixations), dwell time on pages by their type,
number of queries, type of query reformulations [18], and common-
ality of words used in queries. This commonality was measured as
the harmonic mean of the word usage-frequencies (obtained from
the Google Web Trillion Word Corpus [9] which contains approxi-
mately 13.5 mln. unique words) of the words used in queries, with
a lower number indicating that less common, or more specialized
words were used in queries.

Search-effort is operationalized as a two part, multiple-component
construct, composed of the above two groups of measures, SI and
ET: (a) search interaction (i.e., visiting SERPs, clicking links and
visiting content pages (result pages), entering queries); and (b) ac-
quiring text from web pages (i.e., number and duration of reading
fixations, length of reading sequences, number and length of eye
regressions).



Table 1: Selected results showing differences in the search-interactions (SI) and Eye-tracking (ET) variables, for the HI and LO
knowledge-change groups based on our proposed knowledge-change (KC) measures. More differences were observed in ET
measures, and less for SI measures.

LO: Mean
(SD)

HI: Mean
(SD)

M-W
|z|

LO: Mean
(SD)

HI: Mean
(SD)

M-W
|z|

LO: Mean
(SD)

HI: Mean
(SD)

M-W
|z|

eHEALS
36.56 
(5.8)

38.25
(4.58)

1.40
36

(6.65)
38.83
(2.66)

1.50
36.72
(5.77)

38.08
(4.68)

1.04 eHealth Literacy Score of each participant

WMC
4.78 
(.94)

4.85
(1.1)

0.11
4.84

(1.04)
4.79
(1)

0.20
4.86

(1.02)
4.77

(1.03)
0.32

Working Memory Capacity (WMC) for 
remembering long and short words

pg_n
24.72

(14.77)
28.62 

(14.18)
1.07

26.8
(16.67)

26.45
(12.1)

0.46
26.52

(16.78)
26.75

(11.95)
0.71 Total number of webpages visited

pg_serp_n
11.8

(6.25)
11.66
(7.87)

0.38
12.48
(7.93)

10.95
(5.98)

0.33
12.44
(7.93)

11
(5.99)

0.27 Number of SERPs

pg_content_n
11.52
(9.17)

15.33
(9.37)

1.54
12.88
(9.9)

13.91
(8.97)

0.50
12.64

(10.05)
14.16
(8.76)

0.81 Number of CONTENT pages

pg_content_rel_n
9.72

(13.67)
8.33

(5.25)
0.46

10.32
(13.85)

7.7
(4.45)

0.07
10.08

(13.93)
7.95

(4.34)
0.39

Number of CONTENT pages bookmarked (i.e. 
considered relevant)

query_n
6.04

(3.36)
6.12

(3.62)
0.15

6.08
(3.76)

6.08
(3.18)

0.25
6.12

(3.78)
6.04

(3.15)
0.19 Number of queries entered

qr_new_n
0.6

(1.25)
0.83
(.96)

1.49
.48

(.82)
.95

(1.33)
1.35

.4
(.76)

1.04
(1.33)

1.95^ Query reformulations: number of new queries

search_effectiveness
1.63 

(1.49)
2.1

(2.81)
0.06

1.77
(1.63)

1.95
(2.75)

0.31
1.74

(1.65)
1.98

(2.73)
0.17

Ratio of RELEVANT CONTENT pages visited to 
number of queries entered

q_words_freq
9,203k

(14,126k)
8,141k

(12,601k)
0.78

10,325k
(14,079k)

6,973k
(12,442k)

1.76^
10,845k

(14,087k)
6,431k

(12,255k)
2.16 *

Harmonic mean of usage-frequencies of words 
(from Google n-gram corpus [9]) used in queries. 
Lower number means less common (more 
specialized) words were used in queries.

rseq_len
107k
(50k)

80k
(37k)

2.08 *
106k
(50k)

80k
(37k)

2.06 *
106k
(50k)

81k
(37k)

1.98 *
Total length of scan-paths obtained by joining 
'reading' fixation points (in k-pixels)

regr_n
199.52 
(94.05)

156.58
(78.42)

1.63
202.28
(96.99)

153.7
(72.72)

1.75^
202.08
(97.24)

153.91
(72.53)

1.71^ Number of backward regressions

regr_len
43k

(20k)
31k

(15k)
2.04 *

42k
(20k)

31k
(15k)

1.80^
42k

(20k)
31k

(15k)
1.78^ Total length of regressions (in k-pixels)

fix_dur_content_sum
475451 

(170890)
439282

(212973)
1.32

490878
(166768)

423212
(212294)

2.00 *
483675

(177089)
430715

(205695)
1.78^

Total duration of reading fixations on CONTENT 
pages, summed across all such pages (in ms)

fix_dur_content_avg
25673

(22351)
15607
(9774)

2.02 *
22908

(18316)
18486

(17615)
1.80^

22698
(18450)

18706
(17523)

1.54
Total duration of reading fixations on CONTENT 
pages, averaged across all such pages (in ms)

fix_n_content_avg
92.05 

(81.38)
56.57

(31.46)
1.90^

82.32
(67.59)

66.71
(60.6)

1.74^
82.29

(67.61)
66.75

(60.58)
1.72^

Number of reading fixations per CONTENT page, 
averaged across pages visited

pRR_serp
.29 
(.1)

.23
(.11)

2.10 *
.28
(.1)

.23
(.12)

1.50
.28
(.1)

.23
(.12)

1.60
Probability of continuing to read on SERPs, 
averaged across SERPs visited

pRR_content
.3 

(.06)
.34

(.12)
0.54

.3
(.07)

.34
(.11)

0.64
.3

(.07)
.34

(.11)
1.02

Probability of continuing to read on CONTENT 
pages, averaged across pages visited

Workload NASA_TLX
2.98 
(.7)

3.25
(.7)

1.18
2.87
(.62)

3.36
(.71)

2.16 *
2.88
(.62)

3.36
(.72)

2.11 * NASA Task Load Index average score

Participant

Description

Webpage

(SI)

Query

(SI)

Eye-
tracking

(ET)

KC_Simple KC_Sem_Ratio KC_Sem_Diff
Measure
Name

Category

For Mann Whitney (M-W) statistics, (green cells with *) indicates p < .05, and (yellow cells with ˆ ) indicates approaching .05 significance (.05 ≤ p < .1).

5 RESULTS
In the context of our research questions, the ET and SI measures are
our dependent variables, The three KC measures constructed from
Pre- and Post-task responses are our independent variables. We
calculated these variables separately for each task, because we argue
that knowledge of disparate topics are independent of each other,
and that task-topics can interact with participants’ knowledge, and
motivate their cognition differently. So we consider a user-task pair
to be our unit of analysis. Since 30 participants performed two tasks
each, there were 60 user-task pairs. Due to technical difficulties
during the study (computer crash, noisy eye-tracking data, etc.)
some data had to be discarded, and usable data is available for

49 user-task pairs (26 for Task 1 and 23 for Task 2). The analysis
reported in this section are performed on these 49 units of analysis.

For each of the three KC measures, we partitioned the user-
tasks into a LO group and a HI group, based on median-split of the
particular KC score. Thus, we had three LO groups and three HI
groups in total, corresponding to each KC measure.

Since our knowledge change measures are new, we do not fully
know their properties. So we checked in how many instances the
same user-task pair was placed in different groups (LO vs HI) by
the different KC measures. We saw that the LO and HI groups
were nearly identical for the two semantic similarity measures
(KC_Sem_Diff and KC_Sem_Ratio) and differed only in 2/49 cases,



while they were slightly different when semantic similarity mea-
sures were compared with the simple measure (KC_Simple) (9/49
cases). We conclude that our KC measures assess changes in topic
vocabulary in similar way.

Since the measures were not normally distributed, we used non-
parametric Mann-Whitney U tests to compare differences between
the groups reflected in the ET and SI measures described in previous
section. The results and test statistics are reported in Table 1, where
the significant results are marked.

There were no differences between the eHEALS andWMC scores
for the LO and HI groups, and there were no differences between
the groups for most search interaction measures. LO and HI users
visited about the same number of SERPs, and CONTENT pages, and
marked about the same number of the latter as relevant. There was
also no difference in time spent on both types of pages (total and
average), no difference in the number of queries entered, and no dif-
ference in search effectiveness (number of relevant pages found per
query). However, the LO group entered fewer new queries in refor-
mulations (significant difference for KC_Sim_Diff, and approaching
significance for KC_Sim_Ratio), and they used more common (or
less specialized) words in their queries (q_words_freq). The com-
monality of words was measured using word-usage frequency in
English, from the Google Web Trillion Word Corpus [9] (Sec. 4.3).

On CONTENT pages, LO group fixated more, had higher du-
ration of reading fixations, and higher duration of fixations per
page. In particular, on relevant CONTENT pages, the LO group
had longer overall reading sequences and more eye regressions in
reading. But there were no such differences in reading SERPs. On
the other hand, LO users reported lower workload than HI users.

We note that these differences generally have similar pattern
for our simple knowledge change measure (KC_Simple), as well as
for our more sophisticated measure based on semantic similarity
(KC_Sem_Diff and KC_Sem_Ratio).

In addition to examining differences between groups based on
knowledge change measures, we separately examined differences
between the two groups split based on the semantic similarity of
their Post-task entries to expert vocabulary (post_exp_sim). This
measurement, taken at one point in time after each task, represents
assessment of similarity of users’ vocabulary to that of experts. The
results are in Table 2. The LO group visited fewer CONTENT pages,
but about the same number of SERPs. LO found fewer relevant
CONTENT pages, but entered about the same number of queries
and used much fewer new queries in their reformulations: thus the
LO group had lower search effectiveness. This group also reported
lower mental workload on search tasks (approaching significance).
The LO tended to continue reading on SERPs (pRR_serp), but had
lower probability of reading on CONTENT pages (pRR_content).
In contrast the HI group had higher probability to continue read-
ing CONTENT pages but lower on SERPs. LO group had longer
total fixation duration and more fixations on SERPs, but no such
difference was found for CONTENT pages.

We did not analyze the content of the notes taken by the partici-
pants, as we saw that most of the notes were directly copy-pasted
from the webpages they visited, rather than their own assimilation
of the information they found.

Table 2: Selected results showing differences in some search-
interactions (SI) and Eye-tracking (ET) variables, for the HI
and LO groups based on similarity of post-task to expert
knowledge.

LO: Mean
(SD)

HI: Mean
(SD) M-W |z|

pg_n 24.44 
(15.5)

28.91 
(13.24)

1.65^

pg_serp_n 12.48 
(7.73)

10.95 
(6.25)

0.55

pg_content_n 10.4
(8.6)

16.5
(9.29)

2.71*

pg_content_rel_n 8.16
(13.64)

9.95
(5.29)

2.68*

qr_new_n .28
(.79)

1.16
(1.23)

3.29*

search_effectiveness 1.38
(1.47)

2.36
(2.75)

2.19*

fix_dur_serp_avg 3356.92 
(1408.21)

2681.13 
(1377.82)

1.72^

fix_n_serp_avg 12.51
(5.4)

9.94
(5.25)

1.78^

pRR_serp .3
(.11)

.22
(.1)

2.39*

pRR_content .27
(.06)

.37 
(.1)

3.37*

NASA_TLX 2.98 
(.73)

3.25 
(.67)

1.35

Measure
Name

post_exp_sim

For Mann Whitney (M-W) statistics, (*) indicates p < .05, and ( ˆ ) indicates
approaching .05 significance (.05 ≤ p < .1).

6 DISCUSSION
The observed differences between LO and HI groups do not seem to
be related to differences in their health literacy or working memory
capacity. The measured knowledge change was based on lower-
level vocabulary change and was assessed only during a relatively
short duration of experimental session. This may be a reason why
we did not observe effects of literacy in the general search-task-
area (health literacy) on knowledge change. It is also plausible that
our participant sample was too uniform to observe effects of their
general mental capacity, such as working memory capacity (WMC).

The difference in reading behavior between LO and HI groups
on CONTENT pages is in an unexpected direction. The LO group
generally spent more time on reading CONTENT pages, and moved
their eyes backward in reading sequences more often, and by a
longer distance than the HI group. Thus, as reflected in ETmeasures,
the LO group put more effort into reading on the tasks, yet our KC
measures indicate that they learned less. This is a likely indication
that Lo group had more difficulty in acquiring information, and
that in spite of investing more effort, they learned less.

Queries entered by HI group contained more specialized vo-
cabulary than LO group. This evidence, taken together with ET
measures, show that difficulty experienced by LO group in acquir-
ing information may be indicative of lower general verbal skill of
LO group. We have not measured this individual difference in the
current study.

The higher mental workload reported by HI group may be, in
part, a result of higher effort needed to produce more specialized



queries. Prior work showed that query production is associated
with higher levels of cognitive load in web search [13].

Verbal 
Knowledge 
Change

Search 
interactions

webpage counts, 
durations

Specialized 
words in 
queries

NASA TLX
mental 
workload

Eye-
tracking 
measures

eHealth 
Literacy 

Score
Working 
Memory 
Capacity

Figure 3: Summary of our findings. Arrows represent di-
rections of relationship between measurement categories,
while crosses represent no relationship.

Our findings in this work are in line with what was observed
in past efforts to measure knowledge change. For instance, Yu
et al. [32] observed that the total, average and maximum time
spent on webpages have the highest predictive power for measur-
ing knowledge change. Similarly, we also report significant differ-
ences in (a) fix_dur_content_sum between HI and LO groups of
KC_Sem_Ratio, and (b) fix_dur_content_avg between HI and LO
groups of KC_Simple. However, interestingly for us, the direction of
difference in our study is opposite to intuition, i.e. users with higher
knowledge gain spent less time on reading in CONTENT pages. It
is important to remember however, that KC measure of Yu et al.
[32] was based on a series of factual questions related to the topic
of the search task, whereas ours is a topic-independent measure.
Yu et al. [32] further observed that count of unique terms used in
queries was the only query-related feature that showed predictive
power. This is also corroborated by our finding that q_word_freq
differs significantly for HI and LO groups based on KC_Sem_Diff,
and is tending towards significance for KC_Sem_Ratio groups. In
other words, people with increased knowledge change used less
frequent words to perform their searches, which indicates that they
were using specialized vocabulary. Similar to Yu et al’s [32] random
forest model showing that counts and percentages of webpages and
SERPs visited are very weak predictors of knowledge change, our
results also show no significant differences in number of visited
SERPs and CONTENT pages between people who learned more
and learned less.

The one-point measure of semantic similarity between partici-
pant’s post-task free-recall and expert vocabulary (post_exp_sim)
showed interesting relationships between LO/HI groups, and the
SI and ET measures. The LO group were SERP readers who opened
fewer CONTENT pages, found fewer relevant pages, and acquired

less vocabulary. They entered about the same number of queries
and thus visited about the same number of SERPs as HI group.
But the LO group took more time to read the SERPs rather than
investing more time in reading CONTENT pages, which is what HI
group did. The LO group was apparently unable to identify more
relevant results in-spite of investing effort in reading SERPs. The
result was that words and phrases produced by HI group in free-
recall were semantically closer to expert vocabulary than free-recall
entries produced by LO group. Thus we could plausibly speculate
that reading CONTENT pages rather than SERPs positively affects
gaining more specialized vocabulary.

Fig. 3 highlights the findings of our study: users who scored
higher on our knowledge change measure used less frequent /
uncommon words in their queries, did lesser amount of reading
on webpages, and reported higher mental workload, than those
who scored less. No significant differences were found between
groups w.r.t. search interactions, online health literacy, and working
memory capacity.

7 CONCLUSION
Our new measures of knowledge change are related to differences
in reading and querying behavior. But they uncovered some unex-
pected relationships, and plausibly tapped into interaction effects
of search behavior, and reading with individual differences (such
as, verbal ability), which were not measured.

Limitations of our work include using only two search tasks that
were of similar nature (limited to health related topics), performing
data analysis at the task level, a relatively uniform group of partici-
pants, and a short-time frame of experimental session. In future we
plan to use a wider range of tasks, more diverse participant samples,
additional individual difference tests, such as assessment of verbal
skills, and conduct multiple-session study so that learning could be
measured over a longer period of time.
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